Bijections and symmetries for the factorizations of the long cycle
نویسندگان
چکیده
We study the factorizations of the permutation (1, 2, . . . , n) into k factors of given cycle types. Using representation theory, Jackson obtained for each k an elegant formula for counting these factorizations according to the number of cycles of each factor. In the cases k = 2, 3 Schaeffer and Vassilieva gave a combinatorial proof of Jackson’s formula, and Morales and Vassilieva obtained more refined formulas exhibiting a surprising symmetry property. These counting results are indicative of a rich combinatorial theory which has remained elusive to this point, and it is the goal of this article to establish a series of bijections which unveil some of the combinatorial properties of the factorizations of (1, 2, . . . , n) into k factors for all k. We thereby obtain refinements of Jackson’s formulas which extend the cases k = 2, 3 treated by Morales and Vassilieva. Our bijections are described in terms of “constellations”, which are graphs embedded in surfaces encoding the transitive factorizations of permutations.
منابع مشابه
A bijective proof of Jackson's formula for the number of factorizations of a cycle
Factorizations of the cyclic permutation (1 2 . . . N) into two permutations with respectively n and m cycles, or, equivalently, unicellular bicolored maps with N edges and n white and m black vertices, have been enumerated independantly by Jackson and Adrianov using evaluations of characters of the symmetric group. In this paper we present a bijection between unicellular partitioned bicolored ...
متن کاملابررسانای d- موجی، پادفرومغناطیس و مایع اسپینی در ابررساناهای آلی شبه دوبعدی
The self-energy-functional approach is a powerful many-body tool to investigate different broken symmetry phases of strongly correlated electron systems. We use the variational cluster perturbation theory (also called the variational cluster approximation) to investigate the interplay between the antiferromagnetism and d-wave superconductivity of κ-(ET)2 X conductors. These compounds are desc...
متن کاملNew Solutions for Fokker-Plank Equation of Special Stochastic Process via Lie Point Symmetries
In this paper Lie symmetry analysis is applied in order to find new solutions for Fokker Plank equation of Ornstein-Uhlenbeck process. This analysis classifies the solutions format of the Fokker Plank equation by using the Lie algebra of the symmetries of our considered stochastic process.
متن کاملReduction of Differential Equations by Lie Algebra of Symmetries
The paper is devoted to an application of Lie group theory to differential equations. The basic infinitesimal method for calculating symmetry group is presented, and used to determine general symmetry group of some differential equations. We include a number of important applications including integration of ordinary differential equations and finding some solutions of partial differential equa...
متن کاملPolynomial and non-polynomial solutions set for wave equation with using Lie point symmetries
This paper obtains the exact solutions of the wave equation as a second-order partial differential equation (PDE). We are going to calculate polynomial and non-polynomial exact solutions by using Lie point symmetry. We demonstrate the generation of such polynomial through the medium of the group theoretical properties of the equation. A generalized procedure for polynomial solution is pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011